
Solutions to Selected Problems from West, Installment #3

3.1.8 Prove or disprove: Every tree has at most one perfect matching.

Proof: Let T be a tree, and suppose that T has perfect matchings M and M ′. Let P be a maximal
path in T . Then P must have odd length, since otherwise T has a leaf that is unsaturated. But then M
and M ′ must agree on P . Since every edge in T lies on such a path, M = M ′.

3.1.13 Let M and M ′ be matchings in an X, Y -bigraph G. Suppose that M saturates S ⊆ X and M ′ saturates
T ⊆ Y . Prove that G has a matching that saturates S

⋃
T .

Proof: We construct a matching M ′′ that saturates S
⋃

T , using selected edges of M
⋃

M ′. Initially set
M ′′ := ∅. Consider the subgraph H induced by M

⋃
M ′. A component in H is either an isolated edge,

an even cycle in which edges alternate between M and M ′ (an “alternating cycle”), or a path in which
edges alternate between M and M ′ (an “alternating path”). For each isolated edge in e ∈ M

⋃
M ′, set

M ′′ := M ′′ + e. For each alternating cycle C in H , set M ′′ := M ′′ + (E(C)
⋂

M). For each alternating
path P of odd length, set M ′′ := M ′′ +(E(P )

⋂
M) if the endpoints of P are M -saturated; otherwise set

M ′′ := M ′′ + (E(P )
⋂

M ′). For each alternating path P of even length, set M ′′ := M ′′ + (E(P )
⋂

M) if
both ends of P lie in X , and set M ′′ := M ′′ + (E(P )

⋂
M ′) if both ends of P lie in Y . Since we did not

take both M - and M ′- edges from any component of H , M ′′ is a matching in G. It remains to show
that S

⋃
T is saturated. Let v ∈ S

⋃
T . If v ∈ S

⋃
T is saturated by an isolated edge e ∈ E(H), then

since e ∈ M ′′ we know that v is M ′′-saturated. If v lies on an alternating cycle C in H , then v is
saturated by one edge from each matching; the choice of E(C)

⋂
M is arbitrary, and v is saturated by

M ′′. If v is an internal vertex on an alternating path P of odd length, then v is saturated by both M
and M ′, so we must consider only the case in which v is an endpoint of P . Since P has odd length, v
and the opposite endpoint of P are either both (M − M ′)-saturated or both (M ′ − M)-saturated, and
we choose accordingly to ensure that the endpoints of P are M ′′-saturated. Finally, suppose that v lies
on an alternating path P of even length. As in the odd case, if v is an internal vertex on P then v is
clearly M ′′-saturated, so suppose that v is an endpoint of P . If v ∈ S, then P is of the form
v = x1, y1, x2, . . . , yk−1, xk for some k ≥ 2. It follows that x1y1 ∈ M , and that xk ∈ X − S; since the
M -edges of P saturate every vertex of P except xk, these are the edges that we place in M ′′. Similarly,
if v ∈ T , then P is of the form v = y1, x1, y2, . . . , xk−1, yk for some k ≥ 2, y1x1 ∈ M ′, and yk ∈ Y − T .
Taking the M ′ edges of P saturates every vertex of P except yk, and we’re done. 2

3.1.24 Prove that an n× n nonnegative integer matrix Q with constant row/column sum k can be expressed as
a sum of k permutation matrices.

Proof: If k = 1, we’re done, so assume that k > 1 and that the result holds for k − 1. Construct
G = (R, C, E), where ricj ∈ E iff qij 6= 0. Let M be a maximum matching in G. Set

pij =
{

1; ricj ∈ M
0; otherwise. It is not hard to see that P = (pij) is a permutation matrix if and only if M is a

perfect matching. It suffices to show that such a matching exists. We do so by showing that G satisfies
Hall’s condition. So let S ⊆ R. Suppose that |N(S)| < |S|. Then (relabeling the vertices if necessary)
there exist t < s such that S = {r1, . . . , rs} and N(S) = {c1, . . . , ct}. Since the only nonzeros in rows
1, 2, . . . , s of Q are in columns 1, 2, . . . , t, and since Q has constant line sum k, it follows that

s∑

i=1

t∑

j=1

qij =
s∑

i=1

k = sk. But then the average of column sums 1, 2, . . . , t is at least sk/t > k, a

contradiction. So |N(S)| ≥ |S| for each S ⊂ R. A similar argument applies to subsets S ⊆ C. So M is a
perfect matching, and P a permutation matrix. By the induction hypothesis, Q − P is a sum of k − 1
permutation matrices, and the result follows. 2
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Figure 1: Figure for problem 3.1.28

3.1.28 We are to find either a perfect matching in the graph H , below, or a simple proof that none exists. The
reality is that none exists. The graph is bipartite, and can be labeled as shown using colors red and
blue. There are 21 vertices of each color, so at first glance it appears that a perfect matching might
exist. Such a matching would necessarily contain 21 edges. But consider the edge cut shown by the line
running southwest to northeast and bisecting the graph. The ten blue vertices to the left of the cut and
the ten red vertices to the right constitute a vertex covering of cardinality twenty, so by the
König-Egerváry theorem no perfect matching can exist. 2

3.2.2 Show how to use the Hungarian Algorithm to determine whether a bipartite graph G = (X, Y, E) has a
perfect matching.

Solution: We can assume that |X | = |Y |, since otherwise no such matching exists. For the matrix of
weights, we simply use the adjacency matrix of G. The Hungarian Algorithm will find a matching of
total weight |X | if and only if G has a perfect matching.

3.2.8 Suppose the weights in the n × n matrix A have the form wij = aibj , where a1, a2, . . . , an and
b1, b2, . . . , bn are the weights associated with the rows and columns, respectively. Determine the
maximum weight of a transversal of A. What about the case wij = ai + bj?

Solution: We first consider the problem in which wij = aibj . We show that a greedy approach in which
we iteratively attempt to maximize the product aibj among all available indices i, j is optimal. In other

words, if a1 ≤ a2 ≤ · · · ,≤ an and b1 ≤ b2 ≤ · · · ≤ bn, then the diagonal traversal, with weight
n∑

i=1

aibi, is

optimal.

Without loss of generality (permuting rows and/or columns if necessary) assume that the inequalities
described above hold. Let T be any transversal of A, and let D denote the diagonal transversal. We
must show that w(D) − w(T ) ≥ 0. If T = D, there is nothing to show, so assume T 6= D. Then there
exist i1, i2, . . . , ik such that ai1i2 , ai2i3 , . . . , aiki1 ∈ T . We may assume that i1 = min

k
{ik}. It follows that

2



w(D) − w(T ) = wi1i1 + wi2i2 + · · · + wik ik
− (wi1i2 + wi2i3 + · · · + wik i1)

= ai1bi1 + ai2bi2 + · · ·aik
bik

− (ai1bi2ai2bi3 + · · · + aik
bi1)

= ai1(bi1 − bi2) + ai2(bi2 − bi3) + · · · + aik
(bik

− bi1)
≥ ai1(bi1 − bi2) + ai1(bi2 − bi3) + · · · + ai1(bik

− bi1)

= ai1

k∑

j=1

(bij − bij )

= 0,

which is what we needed to show. 2

Now consider the second problem, in which wij = ai + bj . Let T be any transversal of A. Then there
exists a permutation π of {ai} such that T contains aiπi for each 1 ≤ i ≤ n. It follows that

w(T ) =
n∑

i=1

wiπi =
n∑

i=1

(ai + bπi) =
n∑

i=1

ai +
n∑

i=1

bi,

so all transversals have the same weight.

MA/Ra, August 3, 2004
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